Filter by Themen
Sonstiges
Abwasserbehandlung
Analytik & Hygiene
Digitalisierung
Energie
Events
Nachhaltigkeit & Umweltschutz
Netze
Wasseraufbereitung
Wassergewinnung
Wasserstress
Water Solutions
Filter by Kategorien
Advertorial
Branche
Events
Forschung & Entwicklung
Leute
News
People
Products & Solutions
Produkte & Verfahren
Publications
Publikationen
Sonstiges
Trade & Industry
Filter by Veranstaltungsschlagworte
abwasser
ACHEMA
Automatisierung
Digitalisierung
Emerging Pollutants
Energie
FDBR
Hydrologie
kanalnetze
Krankheitserreger
MSR
Spurenstoffe
Talsperren
trinkwasser
Wasser
wasseraufbereitung
wasserbau
Wassernetze
Wasserversorgung
FS Logoi

Hybride Modelle – optimierte Pumpspeicherwerke

Mit dem Ausbau der Nutzung regenerativer Energiequellen wie Windkraft und Solarenergie steigt der Bedarf an Speichern für große Strommengen enorm an. Die bislang einzige ausgereifte Technologie dafür sind Pumpspeicher(kraft)werke. In Deutschland stellen sie derzeit etwa 7 Gigawatt (GW) Leistung zur Verfügung – bis zum Jahr 2050 werden insgesamt 30 GW bis 45 GW an Speicherleistung benötigt. Neben dem Ausbau geht es auch darum, den Wirkungsgrad und die Betriebssicherheit zu erhöhen: Ingenieure des Karlsruher Instituts für Technologie (KIT) entwickeln Methoden zur Optimierung der Bauwerke und Wasserwege.

von | 12.07.12

NULL

Pumpspeicherwerke können sehr schnell auf die aktuelle Stromproduktion und den -verbrauch reagieren: Schwankungen bei Windkraft und Solarenergie gleichen sie ebenso aus wie Lastspitzen und Schwachlastzeiten. Zudem stellen sie eine ausgereifte und günstige Technologie zum Speichern großer Strommengen dar: Eine Speicherkapazität von 13 Gigawattstunden (GWh) soll künftig das Pumpspeicherwerk Atdorf bieten, bei einer Turbinenleistung von 1400 Megawatt (MW). Etwa 1300 MW sollen es nach der gerade laufenden Erweiterung im luxemburgischen Pumpspeicherwerk Vianden sein. Damit gehört es zu den größten europäischen Pumpspeicherwerken Anlagen wie diese – sowohl was den Wirkungsgrad als auch was die Betriebssicherheit betrifft – zu optimieren, ist Gegenstand der Forschung von Thomas Mohringer vom Institut für Wasser und Gewässerentwicklung (IWG) des KIT.

Eines seiner Ziele ist, möglichst viel der Restenergie aus dem Wasser zu gewinnen, das im Turbinenbetrieb ins untere Becken eines Pumpspeicherwerkes strömt. Ober- und Unterbecken werden im Pumpspeicherwerk Atdorf mit einem neun Kilometer langen Stollen verbunden sein, der einen Durchmesser von neun Metern hat – das ist vergleichbar mit dem eines Autobahntunnels. Die Verluste in einer solchen Rohrleitung hängen von einem komplexen Zusammenspiel der Geschwindigkeit des Wassers, drallbehafteten Strömung und Krümmungseffekten ab. Zum Beispiel wird in einem Rohr mit größerem Durchmesser das Wasser langsamer, wodurch die Verluste durch Reibung geringer werden. „Würde man das Wasser, nachdem es die Turbinen durchlaufen hat, einfach aus dem Kraftwerk fließen lassen, ginge aber immer noch viel Geschwindigkeitsenergie verloren“, erläutert Thomas Mohringer. „Ein intelligent optimiertes Ein- und Auslaufbauwerk wirkt deshalb als Diffusor: Es bremst das Wasser allmählich ab, wandelt Geschwindigkeits- in Druckenergie um – und verbessert damit den Wirkungsgrad des Pumpspeicherwerks.“

Mohringer hat sich auf die Dimensionierung und den Entwurf dieser Bauwerke spezialisiert. Ein Detail dabei sind Trennpfeiler im Auslaufbereich. „Weitet sich das Auslaufrohr löst sich die Strömung häufig von einer Seite ab und fließt auf der anderen Seite entlang der Außenwand ab – auch dadurch entstehen Verluste. Setze ich aber einen Trennpfeiler ein, richtet er die Strömung gerade. Das reduziert die Verluste und bringt gleichzeitig einen kontrollierbaren Abfluss: Ich weiß genau, was das Wasser an welcher Stelle macht. Das erhöht wiederum die Planungssicherheit.“ Als weiteres Prinzip für die Verbesserung hat Thomas Mohringer in seinen Versuchen unter anderem die Aufweitung des Verzugsstücks identifiziert, das vom runden Querschnitt der Rohrleitung in den rechteckigen des Auslaufbereichs überleitet: Auch dieses verlangsamt die Strömung deutlich und bringt Verlusteinsparungen. Mit Verbesserungen wie diesen lässt sich der Gesamtwirkungsgrad vom Pumpspeicherwerken verbessern. „Prozentual gesehen liegt diese Verbesserung nur etwa im Bereich von 0,1 Prozent. Bedenkt man aber die enorme Leistung dieser Kraftwerke, heißt es, dass man bei einer Turbinenleistung von 1400 MW durch die Optimierung bis zu 1,4 MW Regelleistung mehr zur Verfügung hat, ohne dass Zusatzkosten entstehen. Das entspricht der Leistung einer Windkraftanlage – ohne Zusatzaufwand, einfach durch ein intelligentes Bauwerksdesign. Darüber hinaus wird die Betriebssicherheit durch die homogenere Strömung im Bauwerk erhöht“, so Mohringer.

In Variantenstudien hatte der Wasserbau-Ingenieur vorab unter anderem Pfeilerformen und -positionen sowie unterschiedliche Querschnitte und Austrittswinkel der Rohrleitung untersucht: jeweils sowohl in Versuchen am physikalischen Modell im Wasserbaulabor als auch in numerischen Simulationen. Die hybride Modellierung erlaubt es, die Vorteile beider Verfahren zu nutzen und die Ergebnisse zu vergleichen: „Im physikalischen Modell habe ich eine echte Strömung und ein reales Ergebnis, im numerischen kann ich ohne räumliche Beschränkungen im Naturmaßstab arbeiten und erhalte eine hohe Datendichte.“ Unter anderem zeigte der Vergleich zwischen den Geschwindigkeitsmessungen und den Daten aus der Numerik, dass die Ergebnisse beider Modelle sehr gut übereinstimmen. Ziel des Optimierungsansatzes ist es, die numerischen Berechnungen so weiter zu entwickeln, dass Ingenieure bei zukünftigen Planungen die Ergebnisse im physikalischen Modell nur noch überprüfen müssen – statt sie vollständig in aufwändigen Versuchen daran zu erarbeiten.

Das KIT-Zentrum Klima und Umwelt entwickelt Strategien und Technologien zur Sicherung der natürlichen Lebensgrundlagen: Dafür erarbeiten 660 Mitarbeiterinnen und Mitarbeiter aus 32 Instituten Grundlagen- und Anwendungswissen zum Klima- und Umweltwandel. Dabei geht es nicht nur um die Beseitigung der Ursachen von Umweltproblemen, sondern zunehmend um die Anpassung an veränderte Verhältnisse.

Das Karlsruher Institut für Technologie (KIT) ist eine Körperschaft des öffentlichen Rechts nach den Gesetzen des Landes Baden-Württemberg. Es nimmt sowohl die Mission einer Universität als auch die Mission eines nationalen Forschungszentrums in der Helmholtz-Gemeinschaft wahr. Das KIT verfolgt seine Aufgaben im Wissensdreieck Forschung – Lehre – Innovation.

Weitere Informationen unter: http://www.kit.edu


Pumpspeicherwerke können sehr schnell auf die aktuelle Stromproduktion und den -verbrauch reagieren: Schwankungen bei Windkraft und Solarenergie gleichen sie ebenso aus wie Lastspitzen und Schwachlastzeiten. Zudem stellen sie eine ausgereifte und günstige Technologie zum Speichern großer Strommengen dar: Eine Speicherkapazität von 13 Gigawattstunden (GWh) soll künftig das Pumpspeicherwerk Atdorf bieten, bei einer Turbinenleistung von 1400 Megawatt (MW). Etwa 1300 MW sollen es nach der gerade laufenden Erweiterung im luxemburgischen Pumpspeicherwerk Vianden sein. Damit gehört es zu den größten europäischen Pumpspeicherwerken Anlagen wie diese – sowohl was den Wirkungsgrad als auch was die Betriebssicherheit betrifft – zu optimieren, ist Gegenstand der Forschung von Thomas Mohringer vom Institut für Wasser und Gewässerentwicklung (IWG) des KIT.

Eines seiner Ziele ist, möglichst viel der Restenergie aus dem Wasser zu gewinnen, das im Turbinenbetrieb ins untere Becken eines Pumpspeicherwerkes strömt. Ober- und Unterbecken werden im Pumpspeicherwerk Atdorf mit einem neun Kilometer langen Stollen verbunden sein, der einen Durchmesser von neun Metern hat – das ist vergleichbar mit dem eines Autobahntunnels. Die Verluste in einer solchen Rohrleitung hängen von einem komplexen Zusammenspiel der Geschwindigkeit des Wassers, drallbehafteten Strömung und Krümmungseffekten ab. Zum Beispiel wird in einem Rohr mit größerem Durchmesser das Wasser langsamer, wodurch die Verluste durch Reibung geringer werden. „Würde man das Wasser, nachdem es die Turbinen durchlaufen hat, einfach aus dem Kraftwerk fließen lassen, ginge aber immer noch viel Geschwindigkeitsenergie verloren“, erläutert Thomas Mohringer. „Ein intelligent optimiertes Ein- und Auslaufbauwerk wirkt deshalb als Diffusor: Es bremst das Wasser allmählich ab, wandelt Geschwindigkeits- in Druckenergie um – und verbessert damit den Wirkungsgrad des Pumpspeicherwerks.“

Mohringer hat sich auf die Dimensionierung und den Entwurf dieser Bauwerke spezialisiert. Ein Detail dabei sind Trennpfeiler im Auslaufbereich. „Weitet sich das Auslaufrohr löst sich die Strömung häufig von einer Seite ab und fließt auf der anderen Seite entlang der Außenwand ab – auch dadurch entstehen Verluste. Setze ich aber einen Trennpfeiler ein, richtet er die Strömung gerade. Das reduziert die Verluste und bringt gleichzeitig einen kontrollierbaren Abfluss: Ich weiß genau, was das Wasser an welcher Stelle macht. Das erhöht wiederum die Planungssicherheit.“ Als weiteres Prinzip für die Verbesserung hat Thomas Mohringer in seinen Versuchen unter anderem die Aufweitung des Verzugsstücks identifiziert, das vom runden Querschnitt der Rohrleitung in den rechteckigen des Auslaufbereichs überleitet: Auch dieses verlangsamt die Strömung deutlich und bringt Verlusteinsparungen. Mit Verbesserungen wie diesen lässt sich der Gesamtwirkungsgrad vom Pumpspeicherwerken verbessern. „Prozentual gesehen liegt diese Verbesserung nur etwa im Bereich von 0,1 Prozent. Bedenkt man aber die enorme Leistung dieser Kraftwerke, heißt es, dass man bei einer Turbinenleistung von 1400 MW durch die Optimierung bis zu 1,4 MW Regelleistung mehr zur Verfügung hat, ohne dass Zusatzkosten entstehen. Das entspricht der Leistung einer Windkraftanlage – ohne Zusatzaufwand, einfach durch ein intelligentes Bauwerksdesign. Darüber hinaus wird die Betriebssicherheit durch die homogenere Strömung im Bauwerk erhöht“, so Mohringer.

In Variantenstudien hatte der Wasserbau-Ingenieur vorab unter anderem Pfeilerformen und -positionen sowie unterschiedliche Querschnitte und Austrittswinkel der Rohrleitung untersucht: jeweils sowohl in Versuchen am physikalischen Modell im Wasserbaulabor als auch in numerischen Simulationen. Die hybride Modellierung erlaubt es, die Vorteile beider Verfahren zu nutzen und die Ergebnisse zu vergleichen: „Im physikalischen Modell habe ich eine echte Strömung und ein reales Ergebnis, im numerischen kann ich ohne räumliche Beschränkungen im Naturmaßstab arbeiten und erhalte eine hohe Datendichte.“ Unter anderem zeigte der Vergleich zwischen den Geschwindigkeitsmessungen und den Daten aus der Numerik, dass die Ergebnisse beider Modelle sehr gut übereinstimmen. Ziel des Optimierungsansatzes ist es, die numerischen Berechnungen so weiter zu entwickeln, dass Ingenieure bei zukünftigen Planungen die Ergebnisse im physikalischen Modell nur noch überprüfen müssen – statt sie vollständig in aufwändigen Versuchen daran zu erarbeiten.

Das KIT-Zentrum Klima und Umwelt entwickelt Strategien und Technologien zur Sicherung der natürlichen Lebensgrundlagen: Dafür erarbeiten 660 Mitarbeiterinnen und Mitarbeiter aus 32 Instituten Grundlagen- und Anwendungswissen zum Klima- und Umweltwandel. Dabei geht es nicht nur um die Beseitigung der Ursachen von Umweltproblemen, sondern zunehmend um die Anpassung an veränderte Verhältnisse.

Das Karlsruher Institut für Technologie (KIT) ist eine Körperschaft des öffentlichen Rechts nach den Gesetzen des Landes Baden-Württemberg. Es nimmt sowohl die Mission einer Universität als auch die Mission eines nationalen Forschungszentrums in der Helmholtz-Gemeinschaft wahr. Das KIT verfolgt seine Aufgaben im Wissensdreieck Forschung – Lehre – Innovation.

Weitere Informationen unter: http://www.kit.edu

Jetzt Newsletter abonnieren

Stoff für Ihr Wissen, jede Woche in Ihrem Postfach.

Hier anmelden

SeaMe: KI-Monitoring der marinen Ökosysteme bei Offshore-Windparks
SeaMe: KI-Monitoring der marinen Ökosysteme bei Offshore-Windparks

Im Projekt SeaMe entwickelt RWE zusammen mit führenden Forschungspartnern innovative Technologien für ein nachhaltiges Ökosystem-Monitoring von Offshore-Windparks. Ziel ist es, teure, invasive und CO2-intensive Methoden zu ersetzen. Das Deutsche Forschungszentrum für Künstliche Intelligenz (DFKI) rüstet ein autonomes Unterwasserfahrzeug mit ozeanographischen Sensoren und KI-Methoden aus, um eine präzise Datenerfassung und sichere Navigation zu ermöglichen.

mehr lesen
Tracking blue and fin whale migrations in the Arctic
Tracking blue and fin whale migrations in the Arctic

A decade of acoustic data from the eastern Fram Strait reveals unique seasonal behaviors of blue and fin whales. While blue whales are primarily heard in summer and autumn, sporadic winter vocalizations challenge assumptions about their migration. Fin whales, on the other hand, display remarkable flexibility, vocalizing year-round. As climate change reshapes the Arctic, this research highlights the need for targeted conservation to protect these majestic marine mammals from rising human impacts.

mehr lesen
Neue Studie: Flachwasserbereiche treiben Eutrophierung in Klarwasserseen voran
Neue Studie: Flachwasserbereiche treiben Eutrophierung in Klarwasserseen voran

Eine neue Studie des Leibniz-Instituts für Gewässerökologie zeigt, dass auch flache Zonen in tiefen Klarwasserseen zur Überdüngung beitragen können. Veränderungen in der Pflanzenwelt und den Sedimenten führen zu einer erhöhten Phosphorkonzentration, die Algenwachstum und Sauerstoffmangel fördert – selbst in ursprünglich wenig belasteten Gewässern.

mehr lesen

Passende Firmen zum Thema:

Sie möchten die gwf Wasser + Abwasser testen

Bestellen Sie Ihr kostenloses Probeheft

Überzeugen Sie sich selbst: Gerne senden wir Ihnen die gwf Wasser + Abwasser kostenlos und unverbindlich zur Probe!

Finance Illustration 03