Filter by Themen
Filter by Kategorien
Filter by Veranstaltungsschlagworte
FS Logoi

Steter Tropfen höhlt den Stein

Was genau an der Grenzschicht zwischen Tropfen und Stein geschieht untersuchen Bremer Forscher parallel in Experiment und Computersimulation auf molekularer Ebene.Wissenschaftler der Rice University, Texas, und des MARUM – Zentrum für Marine Umweltwissenschaften der Universität Bremen haben einen Weg gefunden, die Prozesse, die bei der Auflösung kristalliner Strukturen im Wasser ablaufen, um ein Vielfaches präziser beschreiben und vorhersagen zu können als bisher möglich. Ihre Ergebnisse sind jetzt in der Fachzeitschrift The Journal of Physical Chemistry erschienen.

von | 29.11.13

NULL

Auflösungsprozess einer Kristallstruktur: Zwei SiO4-Moleküle gehen in Lösung (oben links), Quarzkristall (oben rechts) und computersimulierte Oberfläche einer sich auflösenden Kristallstruktur. A. Lüttge, MARUM

Steter Tropfen höhlt den Stein

Was genau an der Grenzschicht zwischen Tropfen und Stein geschieht untersuchen Bremer Forscher parallel in Experiment und Computersimulation auf molekularer Ebene.

Wissenschaftler der Rice University, Texas, und des MARUM – Zentrum für Marine Umweltwissenschaften der Universität Bremen haben einen Weg gefunden, die Prozesse, die bei der Auflösung kristalliner Strukturen im Wasser ablaufen, um ein Vielfaches präziser beschreiben und vorhersagen zu können als bisher möglich. Ihre Ergebnisse sind jetzt in der Fachzeitschrift The Journal of Physical Chemistry erschienen.


Das Untersuchungsgebiet von MARUM-Wissenschaftler Professor Andreas Lüttge liegt im Nanometerbereich und doch ist es riesengroß. Denn der Professor für Mineralogie forscht an der dünnen Grenzschicht zwischen Mineralen und Flüssigkeiten, die praktisch überall auf der Welt vorkommt, wo Flüssigkeiten auf Minerale treffen: Wo Regen auf Stein fällt, Wasser durch Böden sickert oder auch am Meeresboden in der Tiefsee. Dementsprechend groß ist das Interesse sowohl der Naturwissenschaften als auch der Technik an den Wechselwirkungen zwischen Wasser und kristallinen Strukturen und der präzisen Vorhersagbarkeit von Auflösungsprozessen.

„Um vorhersagen zu können, was mit bestimmten Materialien in der Natur und im Zivilisationsraum geschieht, brauchen wir ein besseres Verständnis der Reaktionen und Mechanismen, die an der Grenzschicht zwischen Mineral und Flüssigkeit ablaufen“, so Lüttge.
Hierzu untersuchten er und sein Team am Beispiel von Siliziumdioxid (SiO2) – besser bekannt als Quarz, dem zweithäufigsten Mineral in der Erdkruste – die Prozesse bei der Auflösung. An der reaktiven Fläche, also der Grenzfläche zwischen Material und Flüssigkeit, laufen verschiedene Reaktionen nacheinander und teilweise auch gleichzeitig ab. Ziel der Studie war es, die dort ablaufenden Wechselwirkungen in Computersimulationen zu erfassen, um damit errechnen zu können, mit welcher Wahrscheinlichkeit welcher Prozess ablaufen wird. „Mit unserer Simulation können wir sehr genau die Wirklichkeit abbilden und damit präzise Vorhersagen zur Auflösung kristalliner Strukturen treffen“, so Lüttge. „Das bisher verwendete Modell zur Vorhersage von Auflösungsprozessen basiert auf der Verwendung von Geschwindigkeitskonstanten und birgt eine große Fehlerquelle. Da kann Vorhersage und Wirklichkeit auch schon einmal um zwei Größenordnungen auseinander klaffen.“

Um zu überprüfen, wie gut ihre Simulationen die realen Prozesse darstellen, kombinieren die Forscher Computermodelle und Experimente. Mit einem besonderen Bildgebungsverfahren, der sogenannten Vertical Scanning Interferometry, das Lüttge mitentwickelt hat, scannen die Forscher den Quarz und erstellen so eine Art Topographie der Kristalloberfläche mit einer Bildauflösung von wenigen Nanometern.

Lüttges neue Methode zur präzisen Vorhersage von Auflösungsprozessen könnte die Standardberechnungen in vielen Teilbereichen der Naturwissenschaften und der Technik revolutionieren. Die möglichen Anwendungsgebiete sind zahlreich: Ob bei der Berechnung zur Stabilität von Baumaterialien oder der Untersuchung von Barrieregesteinen in der Endlagersuche. „Wir wollen im nächsten Schritt versuchen, unsere Simulationen auf größere Systeme und längere Zeiträume zu übertragen.“

Auflösungsprozess einer Kristallstruktur: Zwei SiO4-Moleküle gehen in Lösung (oben links), Quarzkristall (oben rechts) und computersimulierte Oberfläche einer sich auflösenden Kristallstruktur. A. Lüttge, MARUM

Steter Tropfen höhlt den Stein

Was genau an der Grenzschicht zwischen Tropfen und Stein geschieht untersuchen Bremer Forscher parallel in Experiment und Computersimulation auf molekularer Ebene.

Wissenschaftler der Rice University, Texas, und des MARUM – Zentrum für Marine Umweltwissenschaften der Universität Bremen haben einen Weg gefunden, die Prozesse, die bei der Auflösung kristalliner Strukturen im Wasser ablaufen, um ein Vielfaches präziser beschreiben und vorhersagen zu können als bisher möglich. Ihre Ergebnisse sind jetzt in der Fachzeitschrift The Journal of Physical Chemistry erschienen.


Das Untersuchungsgebiet von MARUM-Wissenschaftler Professor Andreas Lüttge liegt im Nanometerbereich und doch ist es riesengroß. Denn der Professor für Mineralogie forscht an der dünnen Grenzschicht zwischen Mineralen und Flüssigkeiten, die praktisch überall auf der Welt vorkommt, wo Flüssigkeiten auf Minerale treffen: Wo Regen auf Stein fällt, Wasser durch Böden sickert oder auch am Meeresboden in der Tiefsee. Dementsprechend groß ist das Interesse sowohl der Naturwissenschaften als auch der Technik an den Wechselwirkungen zwischen Wasser und kristallinen Strukturen und der präzisen Vorhersagbarkeit von Auflösungsprozessen.

„Um vorhersagen zu können, was mit bestimmten Materialien in der Natur und im Zivilisationsraum geschieht, brauchen wir ein besseres Verständnis der Reaktionen und Mechanismen, die an der Grenzschicht zwischen Mineral und Flüssigkeit ablaufen“, so Lüttge.
Hierzu untersuchten er und sein Team am Beispiel von Siliziumdioxid (SiO2) – besser bekannt als Quarz, dem zweithäufigsten Mineral in der Erdkruste – die Prozesse bei der Auflösung. An der reaktiven Fläche, also der Grenzfläche zwischen Material und Flüssigkeit, laufen verschiedene Reaktionen nacheinander und teilweise auch gleichzeitig ab. Ziel der Studie war es, die dort ablaufenden Wechselwirkungen in Computersimulationen zu erfassen, um damit errechnen zu können, mit welcher Wahrscheinlichkeit welcher Prozess ablaufen wird. „Mit unserer Simulation können wir sehr genau die Wirklichkeit abbilden und damit präzise Vorhersagen zur Auflösung kristalliner Strukturen treffen“, so Lüttge. „Das bisher verwendete Modell zur Vorhersage von Auflösungsprozessen basiert auf der Verwendung von Geschwindigkeitskonstanten und birgt eine große Fehlerquelle. Da kann Vorhersage und Wirklichkeit auch schon einmal um zwei Größenordnungen auseinander klaffen.“

Um zu überprüfen, wie gut ihre Simulationen die realen Prozesse darstellen, kombinieren die Forscher Computermodelle und Experimente. Mit einem besonderen Bildgebungsverfahren, der sogenannten Vertical Scanning Interferometry, das Lüttge mitentwickelt hat, scannen die Forscher den Quarz und erstellen so eine Art Topographie der Kristalloberfläche mit einer Bildauflösung von wenigen Nanometern.

Lüttges neue Methode zur präzisen Vorhersage von Auflösungsprozessen könnte die Standardberechnungen in vielen Teilbereichen der Naturwissenschaften und der Technik revolutionieren. Die möglichen Anwendungsgebiete sind zahlreich: Ob bei der Berechnung zur Stabilität von Baumaterialien oder der Untersuchung von Barrieregesteinen in der Endlagersuche. „Wir wollen im nächsten Schritt versuchen, unsere Simulationen auf größere Systeme und längere Zeiträume zu übertragen.“

Bildquelle, falls nicht im Bild oben angegeben:

Jetzt Newsletter abonnieren

Stoff für Ihr Wissen, jede Woche in Ihrem Postfach.

Hier anmelden

Wie sich Südafrika aus dem Meer erhebt
Wie sich Südafrika aus dem Meer erhebt

Südafrika hebt sich langsam aus den Fluten – je nach Region um bis zu zwei Millimeter pro Jahr. Bislang glaubte man, dass Strömungsvorgänge im Erdmantel das Phänomen verursachen. Eine Studie der Universität Bonn liefert nun jedoch eine andere Erklärung: Demnach sind Dürren und die damit verbundenen Wasserverluste der Hauptgrund für den Anstieg.

mehr lesen
Nor-Shipping 2025 turns spotlight on innovation
Nor-Shipping 2025 turns spotlight on innovation

Nor-Shipping 2025, taking place in Oslo and Lillestrøm 2-6 June, announced on 12 May the shortlists for two of its most coveted accolades, the Next Generation Ship Award and the Ocean Solutions Award. Celebrating innovations, technologies and pioneering projects capable of balancing both environmental and commercial sustainability, the initiatives attracted a huge number of entries from across the world. Selecting the eventual winners was, according to Nor-Shipping Director Sidsel Norvik, „tougher than ever“.

mehr lesen
University of Tübingen: Glyphosate in waters may originate from detergent additives
University of Tübingen: Glyphosate in waters may originate from detergent additives

Certain detergent additives known as aminopolyphosphonates can be transformed into glyphosate and other problematic substances when wastewater is treated. A research team led by Professor Stefan Haderlein of the Geo- and Environmental Center at the University of Tübingen has made this fundamental finding. To achieve this, the team carried out comprehensive experiments in the laboratory which also included conditions found in wastewater. The finding solidifies the suspicion that detergent additives are a significant source of the consistently high levels of glyphosate in European waters. It was previously assumed glyphosate was released into the environment almost exclusively during its use as an herbicide. The study has been published in the scientific journal Nature Communications.

mehr lesen
Auswirkungen des nächtlichen Himmelsleuchten
Auswirkungen des nächtlichen Himmelsleuchten

Lichtverschmutzung, die als Himmelsleuchten die Nacht erhellt, fördert das Wachstum von Cyanobakterien (gemeinhin auch Blaualgen genannt) und regt die Stoffumsätze in Seen an. Das zeigt eine aktuelle Studie des Leibniz-Instituts für Gewässerökologie und Binnenfischerei (IGB), die Teil des bislang größten Freilandexperiments zur Wirkung von Lichtverschmutzung auf Seen ist.

mehr lesen

Passende Firmen zum Thema:

VEGA Grieshaber KG

Thema: Digitalisierung

Digitalisierung und

Barthauer Software GmbH

Thema: Digitalisierung

Netzinformationssysteme BaSYS – smart IT for smart

Sie möchten die gwf Wasser + Abwasser testen

Bestellen Sie Ihr kostenloses Probeheft

Überzeugen Sie sich selbst: Gerne senden wir Ihnen die gwf Wasser + Abwasser kostenlos und unverbindlich zur Probe!

Finance Illustration 03