Suche...
Generic filters
Filter by Themen
Abwasserbehandlung
Analytik & Hygiene
Digitalisierung
Energie
Engineering
Events
gwf - Wasser|Abwasser
Industriewasser
Kosten & Tarife
Nachhaltigkeit & Umweltschutz
Netze
Politik
Recht & Regelwerk
Wasser & Abwasser
Wasseraufbereitung
Wassergewinnung
Wasserstress
Water Solutions
Filter by Kategorien
Branche
Forschung & Entwicklung
Leute
People
Products & Solutions
Produkte & Verfahren
Publications
Publikationen
Sonstiges
Trade & Industry
Filter by Kategorien
Firmenverzeichnis
Geschützte Downloads
Mediadaten
Öffentliche Downloads
Filter by Veranstaltungsschlagworte
abwasser
ACHEMA
Automatisierung
FDBR
Hydrologie
kanalnetze
MSR
Talsperren
trinkwasser
wasseraufbereitung
wasserbau
Wassernetze
Wasserversorgung

“Traveling” droughts: new possibilities for prediction

Kategorie:
Thema:
Autor: Jonas Völker

“Traveling” droughts: new possibilities for prediction

A small subset of the most intense droughts move across continents in predictable patterns, according a new study published in the journal Geophysical Research Letters by researchers in Austria and the United States. The study could help improve projections of future drought, allowing for more effective planning. While most droughts tend to stay put near where they started, approximately 10% travel between 1,400 to 3,100 kilometers (depending on the continent), the study found. These traveling droughts also tend to be the largest and most severe ones, with the highest potential for damage to the agriculture, energy, water, and humanitarian aid sectors.

Like a slow-motion hurricane

“Most people think of a drought as a local or regional problem, but some intense droughts actually migrate, like a slow-motion hurricane on a timescale of months to years instead of days to weeks,” says Julio Herrera-Estrada, a graduate student in civil and environmental engineering at Princeton, who led the study. The researchers analyzed drought data from 1979 to 2009, identifying 1,420 droughts worldwide. They found hotspots on each continent where a number of droughts had followed similar tracks. For example, in the southwestern United States, droughts tend to move from south to north. In Australia, the researchers found two drought hotspots and common directions of movement, one from the east coast in a northwest direction, the other from the central plains in a northeast direction. What causes some droughts to travel remains unclear, but the data suggest that feedback between precipitation and evaporation in the atmosphere and land may play a role.

Better predictions

“This study also suggests that there might be specific tipping points in how large and how intense a drought is, beyond which it will carry on growing and intensifying,” said Justin Sheffield, a professor of hydrology and remote sensing at the University of Southampton. Sheffield was Herrera-Estrada’s advisor while serving as research scholar at Princeton. While the initial onset of a drought remains difficult to predict, the new model could allow researchers to better predict how droughts will evolve and persist. “This study used an innovative approach to study how droughts evolve in space and time simultaneously, to have a more comprehensive understanding of their behaviors and characteristics, which has not been possible from previous approaches,” says Yusuke Satoh, a researcher at the International Institute for Applied Systems Analysis (IIASA), who also worked on the study.

The importance of sharing information

The study also raises the importance of regional cooperation and of sharing information across borders, whether state or national. One example is the North American Drought Monitor, which brings together measurements and other information from Mexico, the US, and Canada, creating a comprehensive real-time monitoring system. The researchers said the next step for the work is to examine why and how droughts travel by studying the feedback between evaporation and precipitation in greater detail. Herrera-Estrada also said he would like to analyze how drought behavior might be affected by climate change. Herrera-Estrada worked on this project as a participant in the IIASA Young Scientists Summer Program.

Das könnte Sie auch interessieren:

Wasser als Schlüssel für neue Ressourcenkreisläufe
Hacker unterstützen im Kampf gegen Hochwasser
Hochwasserschutz: Neuer Bundesraumordnungsplan schließt Bauen in gefährdeten Gebieten aus

Passende Firmen zum Thema:

Publikationen

Water Sensitive Urban Design as a Role Model for Water Management in Germany?

Water Sensitive Urban Design as a Role Model for Water Management in Germany?

Autor: Jacqueline Hoyer / Juliane Ziegler
Themenbereich: gwf - Wasser|Abwasser
Erscheinungsjahr: 2013

“Water Sensitive Urban Design” (WSUD), originally developed in Australia, is a planning and design approach combining the functionality of water management with principles of urban design. WSUD is mainly used in the development of integrated ...

Zum Produkt

Tertiary Filtration with Ultrafiltration Membranes in Municipal Wastewater Treatment Plants

Tertiary Filtration with Ultrafiltration Membranes in Municipal Wastewater Treatment Plants

Autor: Martin Wett and Eberhard Back
Themenbereich: gwf - Wasser|Abwasser
Erscheinungsjahr: 2011

During the operation of tertiary filtration stages in a dead-end-mode, retentate concentrate and rinsing water from membrane cleaning accrue naturally. Work on process solutions for these process waters with no additional particle loads for the ...

Zum Produkt

Water Solutions – 01 2017

Water Solutions – 01 2017

Themenbereich: Water Solutions
Erscheinungsjahr: 2017

The leading professional magazine for water and wastewater ...

Zum Produkt

Mehr Publikationen...

Sie möchten die gwf Wasser + Abwasser testen

Bestellen Sie Ihr kostenloses Probeheft

Überzeugen Sie sich selbst: Gerne senden wir Ihnen die gwf Wasser + Abwasser kostenlos und unverbindlich zur Probe!

Finance Illustration 03