Suche...
Generic filters
Filter by Themen
Abwasserbehandlung
Analytik & Hygiene
Digitalisierung
Energie
Engineering
Events
Kosten & Tarife
Nachhaltigkeit & Umweltschutz
Netze
Politik
Recht & Regelwerk
Wasseraufbereitung
Wassergewinnung
Wasserstress
Water Solutions
Filter by Kategorien
Branche
Forschung & Entwicklung
Leute
People
Products & Solutions
Produkte & Verfahren
Publications
Publikationen
Sonstiges
Trade & Industry
Filter by Kategorien
Firmenverzeichnis
Geschützte Downloads
Mediadaten
Öffentliche Downloads
Filter by Veranstaltungsschlagworte
abwasser
ACHEMA
Automatisierung
FDBR
kanalnetze
MSR
Talsperren
trinkwasser
wasseraufbereitung
wasserbau
Wassernetze
Wasserversorgung

Climate change: more than 90% of glacier volume in the Alps could be lost by 2100

Kategorie:
Autor: Jonas Völker

Climate change: more than 90% of glacier volume in the Alps could be lost by 2100

The study, conducted by a team of researchers in Switzerland, provides the most up-to-date and detailed estimates of the future of all glaciers in the Alps, around 4000. It projects large changes to occur in the coming decades: from 2017 to 2050, about 50% of glacier volume will disappear, largely independently of how much we cut our greenhouse gas emissions.
After 2050, “the future evolution of glaciers will strongly depend on how the climate will evolve,” says study-leader Harry Zekollari, a researcher at ETH Zurich and the Swiss Federal Institute for Forest, Snow and Landscape Research, now at Delft University of Technology in the Netherlands. “In case of a more limited warming, a far more substantial part of the glaciers could be saved,” he says.
Glacier retreat would have a large impact on the Alps since glaciers are an important part of the region’s ecosystem, landscape and economy. They attract tourists to the mountain ranges and act as natural fresh water reservoirs. Glaciers provide a source of water for fauna and flora, as well as for agriculture and hydroelectricity, which is especially important in warm and dry periods.

Modeling methods and scenarios

To find out how Alpine glaciers would manage in a warming world, Zekollari and his co-authors used new computer models (combining ice flow and melt processes) and observational data to study how each of these ice bodies would change in the future for different emission scenarios. They used 2017 as their ‘present day’ reference, a year when Alpine glaciers had a total volume of about 100 km3.
Under a scenario implying limited warming, called RCP2.6, emissions of greenhouse gases would peak in the next few years and then decline rapidly, keeping the level of added warming at the end of the century below 2°C since pre-industrial levels. In this case, Alpine glaciers would be reduced to about 37 km3 by 2100, just over one-third of their present-day volume.
Under the high-emissions scenario, corresponding to RCP8.5, emissions would continue to rise rapidly over the next few decades. “In this pessimistic case, the Alps will be mostly ice free by 2100, with only isolated ice patches remaining at high elevation, representing 5% or less of the present-day ice volume,” says Matthias Huss, a researcher at ETH Zurich and co-author of The Cryosphere study. Global emissions are currently just above what is projected by this scenario.
The Alps would lose about 50% of their present glacier volume by 2050 in all scenarios. A reason why volume loss is mostly independent of emissions until 2050 is that increases in mean global temperature with increasing greenhouse gases only become more pronounced in the second half of the century. Another reason is that glaciers at present have ‘too much’ ice: their volume, especially at lower elevations, still reflects the colder climate of the past because glaciers are slow at responding to changing climate conditions. Even if we manage to stop the climate from warming any further, keeping it at the level of the past ten years, glaciers would still lose about 40% of their present-day volume by 2050 because of this “glacier response time,” says Zekollari.
“Glaciers in the European Alps and their recent evolution are some of the clearest indicators of the ongoing changes in climate,” says ETH Zurich senior co-author Daniel Farinotti. “The future of these glaciers in indeed at risk, but there is still a possibility to limit their future losses.”
The paper can be downloaded here.

The European Geosciences Union (EGU)
EGU is Europe’s premier geosciences union, dedicated to the pursuit of excellence in the Earth, planetary, and space sciences for the benefit of humanity, worldwide. It is a non-profit interdisciplinary learned association of scientists founded in 2002 with headquarters in Munich, Germany. The EGU publishes a number of diverse scientific journals, which use an innovative open access format, and organises a number of topical meetings, and education, policy and outreach activities. Its annual General Assembly is the largest and most prominent European geosciences event, attracting over 14,000 scientists from all over the world. The meeting’s sessions cover a wide range of topics, including volcanology, planetary exploration, the Earth’s internal structure and atmosphere, climate, energy, and resources.
The Cryosphere (TC)
TC is an international scientific journal dedicated to the publication and discussion of research articles, short communications, and review papers on all aspects of frozen water and ground on Earth and on other planetary bodies. The main subject areas are ice sheets and glaciers, planetary ice bodies, permafrost, river and lake ice, seasonal snow cover, sea ice, remote sensing, numerical modelling, in situ and laboratory studies of the above and including studies of the interaction of the cryosphere with the rest of the climate system.

Das könnte Sie auch interessieren:

DVGW-Seminar zur Bereitstellung von Löschwasser
33. Trinkwasserkolloquium 2021 online
World Water Week 2021 online

Passende Firmen zum Thema:

Thema: Netze

ERHARD GmbH & Co. KG

Thema: Netze

Armaturen und Formstücke der Marken ERHARD, FRISCHUT & SCHMIEDING

Publikationen

Fused connecting lines made of HDPE in Düsseldorf

Fused connecting lines made of HDPE in Düsseldorf

Autor: Alexander Schuir / Hanjo Kanne / Kai Büßecker
Themenbereich: 3R

Home to about 600,000 inhabitants, the state capital of North Rhine-Westphalia Düsseldorf, like any other city, is constantly endeavouring to provide its citizens, commuters, and guests with a fully functional infrastructure to meet the demands of ...

Zum Produkt

Quality Assurance and modern data management

Quality Assurance and modern data management

Autor: Jörg Sebastian
Themenbereich: 3R

...

Zum Produkt

Rehabilitation of large profiles lacking long-term stability

Rehabilitation of large profiles lacking long-term stability

Autor: Dietmar Beckmann / Heinz Doll / Vladimir Lacmanović
Themenbereich: 3R

Many large interceptor sewers, predominantly installed under public roads, have been in use for over 100 years. They are made of brickwork or compressed concrete and often show serious damage, so that it would seem that long-term stability can no ...

Zum Produkt

Mehr Publikationen...

Sie möchten die gwf Wasser + Abwasser testen

Bestellen Sie Ihr kostenloses Probeheft

Überzeugen Sie sich selbst: Gerne senden wir Ihnen die gwf Wasser + Abwasser kostenlos und unverbindlich zur Probe!

Finance Illustration 03