Filter by Themen
Sonstiges
Abwasserbehandlung
Analytik & Hygiene
Digitalisierung
Energie
Events
Nachhaltigkeit & Umweltschutz
Netze
Wasseraufbereitung
Wassergewinnung
Wasserstress
Water Solutions
Filter by Kategorien
Advertorial
Branche
Events
Forschung & Entwicklung
Leute
News
People
Products & Solutions
Produkte & Verfahren
Publications
Publikationen
Sonstiges
Trade & Industry
Filter by Veranstaltungsschlagworte
abwasser
ACHEMA
Automatisierung
Digitalisierung
Emerging Pollutants
Energie
FDBR
Hydrologie
kanalnetze
Krankheitserreger
MSR
Spurenstoffe
Talsperren
trinkwasser
Wasser
wasseraufbereitung
wasserbau
Wassernetze
Wasserversorgung
FS Logoi

Using AI to detect climate extremes

Climate extremes such as heat waves, heavy rainfall or droughts have far-reaching impacts on ecosystems, agriculture, water resources and human health. In order to understand recent extremes and to be able to assess the resulting climate risks, they must be examined in a historical context.

von | 26.11.24

Reported heatwave event from September 1911: The figure shows the percentage of days when the daily maximum temperature is > 90th percentile (TX90p). Left: Original HadEX-CAM dataset with spatial gaps. Right: reconstruction using AI method CRAI
Reported heatwave event from September 1911: The figure shows the percentage of days when the daily maximum temperature is > 90th percentile (TX90p). Left: Original HadEX-CAM dataset with spatial gaps. Right: reconstruction using AI method CRAI

How do recent extremes compare to past events and are there regional long term trends? Thus, data analysts of DKRZ have developed a method that can effectively reconstruct incomplete observation data on climate extremes by using methods of artificial intelligence (AI). The results of the study were published in the internationally renowned journal “Nature Communications” at the end of October 2024.

Data gaps because of traditional statistical methods

The analysis of past climate extremes is complicated by the fact that existing datasets of observed extremes generally exhibit spatial gaps and inaccuracies due to inadequate spatial extrapolation. This problem arises from traditional statistical methods used to account for the lack of measurements, particularly prevalent before the mid-20th century.

The study demonstrates how AI can effectively reconstruct sparse observational data of European climate extremes (warm and cold days and nights) and reveal spatial trends across the time span from 1901 to 2018 that is not covered by most reanalysis datasets. The analysis shows that the AI method surpasses established statistical methods such as Kriging. The reconstruction is based on transfer learning with Earth System Model data e.g. large data amounts from the Coupled Model Intercomparison Project CMIP6. The computations used the GPU part of DKRZ’s HPC system “Levante”.

The AI reconstructed dataset reveals quantitative evidence for hot and cold extremes in the early 20th century and sheds a new light on the evolution of these extremes. The dataset is provided to the climate community for a better characterization of climate extremes and to improve risk management and policy development.


Contact for scientific information:
Ètienne Plesiat, Data analyst at DKRZ: plesiat@dkrz.de

Original publication:
Étienne Plésiat, Robert J. H. Dunn, Markus G. Donat & Christopher Kadow: Artificial intelligence reveals past climate extremes by reconstructing historical records, Nature Communications volume 15, Article number: 9191 (2024), https://doi.org/10.1038/s41467-024-53464-2

Jetzt Newsletter abonnieren

Stoff für Ihr Wissen, jede Woche in Ihrem Postfach.

Hier anmelden

SeaMe: KI-Monitoring der marinen Ökosysteme bei Offshore-Windparks
SeaMe: KI-Monitoring der marinen Ökosysteme bei Offshore-Windparks

Im Projekt SeaMe entwickelt RWE zusammen mit führenden Forschungspartnern innovative Technologien für ein nachhaltiges Ökosystem-Monitoring von Offshore-Windparks. Ziel ist es, teure, invasive und CO2-intensive Methoden zu ersetzen. Das Deutsche Forschungszentrum für Künstliche Intelligenz (DFKI) rüstet ein autonomes Unterwasserfahrzeug mit ozeanographischen Sensoren und KI-Methoden aus, um eine präzise Datenerfassung und sichere Navigation zu ermöglichen.

mehr lesen
Tracking blue and fin whale migrations in the Arctic
Tracking blue and fin whale migrations in the Arctic

A decade of acoustic data from the eastern Fram Strait reveals unique seasonal behaviors of blue and fin whales. While blue whales are primarily heard in summer and autumn, sporadic winter vocalizations challenge assumptions about their migration. Fin whales, on the other hand, display remarkable flexibility, vocalizing year-round. As climate change reshapes the Arctic, this research highlights the need for targeted conservation to protect these majestic marine mammals from rising human impacts.

mehr lesen
Neue Studie: Flachwasserbereiche treiben Eutrophierung in Klarwasserseen voran
Neue Studie: Flachwasserbereiche treiben Eutrophierung in Klarwasserseen voran

Eine neue Studie des Leibniz-Instituts für Gewässerökologie zeigt, dass auch flache Zonen in tiefen Klarwasserseen zur Überdüngung beitragen können. Veränderungen in der Pflanzenwelt und den Sedimenten führen zu einer erhöhten Phosphorkonzentration, die Algenwachstum und Sauerstoffmangel fördert – selbst in ursprünglich wenig belasteten Gewässern.

mehr lesen

Passende Firmen zum Thema:

Sie möchten die gwf Wasser + Abwasser testen

Bestellen Sie Ihr kostenloses Probeheft

Überzeugen Sie sich selbst: Gerne senden wir Ihnen die gwf Wasser + Abwasser kostenlos und unverbindlich zur Probe!

Finance Illustration 03