Generic filters
Filter by Themen
Analytik & Hygiene
Nachhaltigkeit & Umweltschutz
Wasser & Abwasser
Water Solutions
Filter by Kategorien
Forschung & Entwicklung
Products & Solutions
Produkte & Verfahren
Trade & Industry
Filter by Kategorien
Geschützte Downloads
Öffentliche Downloads
Filter by Veranstaltungsschlagworte

Scientists decontaminate heavy metal water using protein from plant waste

Autor: Patricia Santos

Scientists decontaminate heavy metal water using protein from plant waste
The scientists discovered that proteins derived from the by-products of peanut or sunflower oil production can attract heavy metal ions very effectively.

July 1, 2022 | Scientists from Nanyang Technological University (NTU, Singapore), in collaboration with ETH Zurich (ETHZ, Switzerland), have created a membrane made from a waste by-product of vegetable oil manufacturing, which can filter out heavy metals from contaminated water.

The research team, led by Professor Ali Miserez from the School of Materials Science & Engineering and the School of Biological Sciences and NTU Visiting Professor Raffaele Mezzenga from the Department of Health Science and Technology at ETHZ, discovered that proteins derived from the by-products of peanut or sunflower oil production can attract heavy metal ions very effectively.

In tests, they showed that this process of attraction, called adsorption, was able to purify contaminated water to a degree that meets international drinking standards.

Developed membrane has great potential

The researchers’ membrane has the potential to be a cheap, low-power, sustainable, and scalable method to decontaminate heavy metals from water.

“Our protein-based membranes are created through a green and sustainable process, and require little to no power to run, making them viable for use throughout the world and especially in less developed countries. Our work puts heavy metal where it belongs – as a music genre and not a pollutant in drinking water,” said Prof Miserez.

The team’s research findings were published in Chemical Engineering Journal in April. Their research focus in bringing about water security is aligned with the NTU 2025 strategic plan and the university’s goal in mitigating humanity’s impact on the environment.

Transforming vegetable oilseed meals into water filters

The production of commercial household vegetable oils generates waste by-products called oilseed meals. These are the protein-rich leftovers that remain after the oil has been extracted from the raw plant.

The NTU-led research team used the oilseed meals from two common vegetable oils, sunflower and peanut oil. After extracting the proteins from oilseed meal, the team turned them into nano-sized protein amyloid fibrils, which are rope-like structures made of tightly-wound proteins. These protein amyloid fibrils are drawn to heavy metals and act like a molecular sieve, trapping heavy metal ions as they pass by. A kilogram of oilseed meal produces about 160g of protein.

The paper’s first author, NTU PhD student Mr Soon Wei Long, said: “Protein-rich sunflower and peanut meals are low-cost raw materials, from which protein can be extracted, isolated, and self-assembled into functional amyloid fibrils for heavy metal removal. This is the first time amyloid fibrils have been obtained from sunflower and peanut proteins.”

Hybrid membrane

The researchers combined the extracted amyloid fibrils with activated carbon – a commonly-used filtration material – to form a hybrid membrane. They tested their membranes on three common heavy metal pollutants: platinum, chromium and lead.

As contaminated water flows through the membrane, the heavy metal ions stick onto the surface of the amyloid fibrils – a process called adsorption. The high surface-to-volume ratio of amyloid fibrils makes them efficient in adsorbing a large amount of heavy metals.

The team found that their membranes filtered up to 99.89 per cent of heavy metals. Among the three metals tested, the filter was most effective for lead and platinum, followed by chromium.

Filter can be used to filter PFAS

“The filter can be used to filter any sorts of heavy metals, and also organic pollutants like PFAS (perfluoroalkyl and polyfluoroalkyl substances), which are chemicals that have been used in a wide range of consumer and industrial products,” said Prof Miserez. “The amyloid fibrils contain amino acid bonds that trap and sandwich heavy metal particles between them while letting water pass through.”

The researchers say the concentration of heavy metals in contaminated water will determine how much volume of water the membrane can filter out. A hybrid membrane made with sunflower protein amyloids will require only 16kg of protein to filter the equivalent volume of an Olympic-sized swimming pool contaminated with 400 parts per billion (ppb) of lead into drinking water.

“The process is readily scalable due to its simplicity and minimal use of chemical reagents, pointing towards sustainable and low-cost water treatment technologies,” said Mr Soon. “This allows us to re-process waste streams for further applications and to fully exploit different industrial food wastes into beneficial technologies.

Reusing the extracted metals

The trapped metals can also be extracted and further recycled. After filtration, the membrane used to trap the metals can simply be burnt, leaving behind the metals.

“While metals like lead or mercury are poisonous and can be safely disposed of, other metals, such as platinum, have valuable applications in creating electronics and other sensitive equipment,” said Prof Miserez.

“Recovering precious platinum, which costs US$33,000/kg, only requires 32 kg of protein, while recovering gold, which is worth almost US$60,000/kg, only requires 16 kg of protein. Considering that these proteins are obtained from industrial waste that is worth less than US$1/kg, there are large cost benefits.”

Sustainable, low-power filtration

The paper’s co-author, Prof Raffaele Mezzenga, had previously discovered in 2016 that whey proteins derived from the milk of cows had similar metal-attracting properties.

The researchers realized that proteins from vegetable oilseed meal could also have similar properties. Their experiments showed that those proteins were not only just as effective, but also cheaper and more sustainable as it uses up waste which would otherwise be discarded or used as food for animal feedstock.

Another big advantage, the researchers say, is that this filtration requires little or no energy, unlike other methods like reverse osmosis that require electricity.

“With our membrane, gravity does most or all of the work,” said Prof Mezzenga. “This low-power filtration method can be very useful in areas where there might be limited access to electricity and power.

The researchers are currently exploring the commercial applications of their membrane with BluAct, a Europe-based water filtration spin-off company of ETH Zurich.

Original publication:

“Plant-based amyloids from food waste for removal of heavy metals from contaminated water”, published in Chemical Engineering Journal, 30 April 2022. DOI: 10.1016/j.cej.2022.136513

Das könnte Sie auch interessieren:

New model predicts areas susceptible to debris flows
AWWA’s State of the Water Industry report released
Study shows advantages of ecological flood protection

Passende Firmen zum Thema:


Water Sensitive Urban Design as a Role Model for Water Management in Germany?

Water Sensitive Urban Design as a Role Model for Water Management in Germany?

Autor: Jacqueline Hoyer / Juliane Ziegler
Themenbereich: gwf - Wasser|Abwasser
Erscheinungsjahr: 2013

“Water Sensitive Urban Design” (WSUD), originally developed in Australia, is a planning and design approach combining the functionality of water management with principles of urban design. WSUD is mainly used in the development of integrated ...

Zum Produkt

Tertiary Filtration with Ultrafiltration Membranes in Municipal Wastewater Treatment Plants

Tertiary Filtration with Ultrafiltration Membranes in Municipal Wastewater Treatment Plants

Autor: Martin Wett and Eberhard Back
Themenbereich: gwf - Wasser|Abwasser
Erscheinungsjahr: 2011

During the operation of tertiary filtration stages in a dead-end-mode, retentate concentrate and rinsing water from membrane cleaning accrue naturally. Work on process solutions for these process waters with no additional particle loads for the ...

Zum Produkt

Water Solutions – 01 2017

Water Solutions – 01 2017

Themenbereich: Water Solutions
Erscheinungsjahr: 2017

The leading professional magazine for water and wastewater ...

Zum Produkt

Sie möchten die gwf Wasser + Abwasser testen

Bestellen Sie Ihr kostenloses Probeheft

Überzeugen Sie sich selbst: Gerne senden wir Ihnen die gwf Wasser + Abwasser kostenlos und unverbindlich zur Probe!

Finance Illustration 03