Filter by Themen
Abwasserbehandlung
Analytik & Hygiene
Digitalisierung
Energie
Events
Nachhaltigkeit & Umweltschutz
Netze
Wasseraufbereitung
Wassergewinnung
Wasserstress
Water Solutions
Filter by Kategorien
Advertorial
Branche
Events
Forschung & Entwicklung
Leute
News
People
Products & Solutions
Produkte & Verfahren
Publications
Publikationen
Sonstiges
Trade & Industry
Filter by Veranstaltungsschlagworte
abwasser
ACHEMA
Automatisierung
Digitalisierung
Emerging Pollutants
Energie
FDBR
Hydrologie
kanalnetze
Krankheitserreger
MSR
Spurenstoffe
Talsperren
trinkwasser
Wasser
wasseraufbereitung
wasserbau
Wassernetze
Wasserversorgung
FS Logoi

Eco-friendly materials to purify water

Kategorie:
Thema:
Autor: Sina Ruhwedel

(Daegu Gyeongbuk Institute of Science and Technology (DGIST)
Water purification through adsorption and photothermal capability of porous macromolecules (Daegu Gyeongbuk Institute of Science and Technology (DGIST)

January 9, 2023 | A team of Daegu Geyonbuk Institute of Science and Technology  (DGIST) developed an atypical porous polymer material that can completely remove phenolic organic contaminants in water at ultra-high speeds. The porous material developed can efficiently remove not only microplastics in the water but also very small-sized volatile organic compounds (VOCs) based on photothermal effect. At the same time, it is expected to be utilized as a high-efficiency adsorption material that can be commercialized in the future as it has cost competitiveness based on raw materials and enables a solar-based water purification process.

Water pollution caused by the rapid development of the chemical industry is a pressing problem, and various water purification technologies and materials have been developed to address this issue. Carbon-based porous materials using existing adsorption mechanisms have limitations in that the adsorption rate is slow and high thermal energy is required for recycling. While various materials have been developed to improve contaminant removal efficiency, it has been difficult to develop materials that simultaneously satisfy excellent recyclability, high efficiency, economic efficiency of raw materials, and industrialization potential.

DGIST Department of Energy Science and Engineering Professor Park Chi-Young’s team has now succeeded in synthesizing a porous polymer with excellent adsorption performance and photothermal properties by reacting an inexpensive and effective precursor. Also, an additional oxidation reaction was experimented on the polymer, and based on the results, a hydrophilic functional group was introduced to enable fast adsorption of micro-pollutants in the aquatic environment.

Furthermore, it was confirmed through experiments that the polymer developed by the research team does not require high thermal energy for recycling and can be used multiple times without loss of performance.

Evaporating water using solar energy

The research team produced a water treatment membrane capable of evaporating water using solar energy as a driving force through the developed polymer’s ability to absorb light broadly and convert the absorbed light into heat. As a result, it was confirmed that the water treatment membrane coated with the oxidized polymer could purify phenolic contaminants through sunlight.

DGIST Department of Energy Science and Engineering Professor Park Chi-Young said, “The technology we developed here is an unrivaled water purification technology with the world’s highest purification efficiency, removing more than 99.9% of phenolic microplastics and VOC contaminants in water at ultra-high speeds. We expected that it will be a universal technology with high economic efficiency that can purify contaminated water and supply drinking water even in areas where there is no power supply.”


The research results were selected and published in Advanced Materials.

Publication:
Wansu Cho, Dongjun Lee, Gyeonghyeon Choi et al, Supramolecular Engineering of Amorphous Porous Polymers for Rapid Adsorption of Micropollutants and Solar‐Powered Volatile Organic Compounds Management, Advanced Materials (2022). DOI: 10.1002/adma.202206982

Das könnte Sie auch interessieren:

Sea anemones that live on the rocky coasts of the Atlantic are exposed to large differences in water temperature. Depending on the individual's personality, they cope with the heat differently.

liquid water

Example of a karst system in the Plitvice Lakes National Park in Croatia: Karst groundwater aquifers are major and important habitats.

Passende Firmen zum Thema:

Publikationen

Water Sensitive Urban Design as a Role Model for Water Management in Germany?

Water Sensitive Urban Design as a Role Model for Water Management in Germany?

Autor: Jacqueline Hoyer / Juliane Ziegler
Themenbereich: gwf - Wasser|Abwasser
Erscheinungsjahr: 2013

“Water Sensitive Urban Design” (WSUD), originally developed in Australia, is a planning and design approach combining the functionality of water management with principles of urban design. WSUD is mainly used in the development of integrated ...

Zum Produkt

Tertiary Filtration with Ultrafiltration Membranes in Municipal Wastewater Treatment Plants

Tertiary Filtration with Ultrafiltration Membranes in Municipal Wastewater Treatment Plants

Autor: Martin Wett and Eberhard Back
Themenbereich: gwf - Wasser|Abwasser
Erscheinungsjahr: 2011

During the operation of tertiary filtration stages in a dead-end-mode, retentate concentrate and rinsing water from membrane cleaning accrue naturally. Work on process solutions for these process waters with no additional particle loads for the ...

Zum Produkt

Water Solutions – 01 2017

Water Solutions – 01 2017

Themenbereich: Water Solutions
Erscheinungsjahr: 2017

The leading professional magazine for water and wastewater ...

Zum Produkt

Sie möchten die gwf Wasser + Abwasser testen

Bestellen Sie Ihr kostenloses Probeheft

Überzeugen Sie sich selbst: Gerne senden wir Ihnen die gwf Wasser + Abwasser kostenlos und unverbindlich zur Probe!

Finance Illustration 03