Filter by Themen
Analytik & Hygiene
Nachhaltigkeit & Umweltschutz
Wasser & Abwasser
Water Solutions
Filter by Kategorien
Forschung & Entwicklung
Products & Solutions
Produkte & Verfahren
Trade & Industry
Filter by Veranstaltungsschlagworte

Arctic lakes act as chimneys for carbon dioxide

Autor: Sina Ruhwedel

Arctic lakes act as chimneys for carbon dioxide

Ocotober 2, 2022 | Many lakes are found at high-latitudes in arctic areas. As they receive and process terrestrial organic carbon, these lakes link terrestrial and aquatic carbon cycles, while emitting CO2 to the atmosphere. Yet, their remote location and long winter periods make studying these systems difficult. This period of ice-cover and subsequent ice-melt is of significant importance for understanding CO2 emission from arctic clear water systems, Dirk Verheijen shows in his thesis at Umeå University, Sweden.

Verheijen and his colleagues studied 43 arctic lakes in the Swedish mountain range, from Jämtland to Riksgränsen, tracking carbon processing through internal metabolism and CO2 exchange to the atmosphere for the full open water season. In addition, an experimental study was set up in Umeå, where manipulation of organic carbon input and temperature allowed for investigation of lake functioning under future climatic conditions.

In his thesis, Dirk Verheijen shows that Arctic lakes either decompose organic carbon and produce CO2 in the lake, or directly emit CO2 derived from land, but that these two sources rarely contribute evenly to lake CO2 release. Instead, depending on lake structure and landscape properties, one of the sources will dominate over 75 percent of the annual release. Thus, lakes are either mainly a ‘reactor’ processing carbon in the landscape, or mainly a ‘chimney’ releasing landscape CO2 to the atmosphere.

Especially deeper lakes in forested areas, with high organic carbon inputs, were found to have substantial emissions resulting from carbon processing and are thus more likely to function as reactors.

Seasons influence lake emissions

By covering a full year, Verheijen and colleagues were moreover able to address the importance of the different seasons in lake emissions. The period of ice-cover and subsequent ice-melt was found to be of significant importance for understanding CO2 emission from arctic clear-water systems.

On average 55 percent of the total emitted CO2 was lost during ice-melt, with especially clear-water lakes, which are low in organic carbon, having a high proportion (up to 100 percent) of the annually evaded CO2 emitted during ice-melt.

Furthermore, the thesis suggests that a warmer climate may, contrary to expectations, have a dampening effect on organic carbon processing through increased nutrient competition and changes to species composition. As a result, warmer lakes may in fact show decreasing in-lake production of CO2, and may take up rather than release CO2 to the atmosphere.

“In a broader perspective, the thesis contributes to our knowledge of how arctic lakes – one of the most common lake types on earth – relate to regional carbon cycles, and what lake and landscape drivers lead to them acting as ‘chimneys’ or ‘reactors’ in the landscape” says Dirk Verheijen.

Lakes are not carbon sinks

The results furthermore stress that omission of ice-melt emission may lead to wrongful classification of the lakes as carbon sinks, while they are in fact emitting CO2 on an annual scale.

Future conditions of increased organic carbon input to lakes will further increase the number of ‘reactors’ in the landscape, as well as increasing arctic lake CO2 emissions. In a future warmer and wetter climate, higher inputs of organic carbon are thus predicted to increase the number of ‘reactors’ in the landscape, while decreasing the relative amount of CO2 released at ice-melt. On the other hand, changes in species composition and decreased ice cover can also increase the amount of carbon taken up by the systems, potentially negating effects of DOC inputs on annual CO2 emissions.

Contact for scientific information:

Hendricus Verheijen, doctoral student, Department of Ecology and Environmental Sciences, Umeå University

About the dissertation

On Friday September 30, Hendricus (Dirk) Verheijen, Department of Ecology and Environmental Sciences, Umeå University, defended his doctoral thesis titled ‘Factors regulating the origin and magnitude of carbon dioxide emissions from high-latitude lakes’. Swedish title: ’Reglerande faktorer av ursprung och mängd av koldioxidutsläpp i sjöar på höga breddgrader’.

Das könnte Sie auch interessieren:

New research shows even a wastewater plant can catch a cold
How rusting iron removes arsenic from water
An integrated modeling framework to assess surface and ground water resources

Passende Firmen zum Thema:


Water Sensitive Urban Design as a Role Model for Water Management in Germany?

Water Sensitive Urban Design as a Role Model for Water Management in Germany?

Autor: Jacqueline Hoyer / Juliane Ziegler
Themenbereich: gwf - Wasser|Abwasser
Erscheinungsjahr: 2013

“Water Sensitive Urban Design” (WSUD), originally developed in Australia, is a planning and design approach combining the functionality of water management with principles of urban design. WSUD is mainly used in the development of integrated ...

Zum Produkt

Tertiary Filtration with Ultrafiltration Membranes in Municipal Wastewater Treatment Plants

Tertiary Filtration with Ultrafiltration Membranes in Municipal Wastewater Treatment Plants

Autor: Martin Wett and Eberhard Back
Themenbereich: gwf - Wasser|Abwasser
Erscheinungsjahr: 2011

During the operation of tertiary filtration stages in a dead-end-mode, retentate concentrate and rinsing water from membrane cleaning accrue naturally. Work on process solutions for these process waters with no additional particle loads for the ...

Zum Produkt

Water Solutions – 01 2017

Water Solutions – 01 2017

Themenbereich: Water Solutions
Erscheinungsjahr: 2017

The leading professional magazine for water and wastewater ...

Zum Produkt

Sie möchten die gwf Wasser + Abwasser testen

Bestellen Sie Ihr kostenloses Probeheft

Überzeugen Sie sich selbst: Gerne senden wir Ihnen die gwf Wasser + Abwasser kostenlos und unverbindlich zur Probe!

Finance Illustration 03