Filter by Themen
Abwasserbehandlung
Analytik & Hygiene
Digitalisierung
Energie
Events
Nachhaltigkeit & Umweltschutz
Netze
Wasseraufbereitung
Wassergewinnung
Wasserstress
Water Solutions
Filter by Kategorien
Advertorial
Branche
Events
Forschung & Entwicklung
Leute
News
People
Products & Solutions
Produkte & Verfahren
Publications
Publikationen
Sonstiges
Trade & Industry
Filter by Veranstaltungsschlagworte
abwasser
ACHEMA
Automatisierung
Digitalisierung
Emerging Pollutants
Energie
FDBR
Hydrologie
kanalnetze
Krankheitserreger
MSR
Spurenstoffe
Talsperren
trinkwasser
Wasser
wasseraufbereitung
wasserbau
Wassernetze
Wasserversorgung
FS Logoi

Improving the efficacy of antibiotics and curbing resistance

Kategorie:
Thema:
Autor: Sina Ruhwedel

December, 12 2022 | New findings from the National Research Programme, financed by the Swiss National Science Foundation, are helping to curb antibiotic resistance. In the field of new antibiotics, however, structures needed for translating results into practice are lacking.

Worldwide, more and more pathogens are becoming resistant to today’s antibiotics. As antibiotics lose their efficacy, infections that were once easy to treat can give rise to fatal illnesses. The National Research Programme “Antimicrobial Resistance” (NRP 72), financed by the Swiss National Science Foundation (SNSF), is looking for ways to counteract this trend.

In 45 projects, researchers have revealed new findings and developed new instruments.

“They are thus creating a basis on which we can deliver a powerful response to the threat posed by antibiotic resistance,” says Joachim Frey, President of the NRP 72 Steering Committee. “But scientific innovation doesn’t implement itself – partners from practice, industry and government are needed”.

Transmission paths of resistance revealed

Antibiotic resistance spreads between human beings, animals and the environment. Until now, it was almost impossible to trace these transmission paths. Thanks to new gene sequencing technologies, the NRP 72 researchers have discovered major interfaces, e.g. the transmission of multi-resistant pathogens from animals to veterinary clinic staff, or elevated resistance concentrations in rivers downstream from sewage treatment plants. Based on these findings, targeted action can be initiated.

So that these data can be used to rapidly detect the spread of resistance across the entire human-animal-environment biological system, researchers have developed a new portal: the Swiss Pathogen Surveillance Platform (SPSP) provides a basis on which the genetic information on bacterial pathogens can in future be linked and analysed. The SPSP already proved its worth during the Covid-19 pandemic, when it delivered ongoing analyses of Sars-CoV-2 variants (instead of the bacterial pathogens for which it was designed).

Instruments developed for more responsible use of antibiotics

The resistance problems are worsened by the incorrect or unnecessary use of antibiotics. Therefore the researchers working on NRP 72 have developed tools and interventions to support professionals when they prescribe antibiotics. In veterinary medicine, for example, an online tool known as AntibioticScout has become established in practice. In human medicine, a number of real-world studies have demonstrated steps that can be taken to improve antibiotic prescribing.

Crucially, rapid tests are needed which enable doctors to select the correct antibiotic – or none at all. In several NRP 72 projects, researchers developed accelerated test methods, some of which are already being used in practice.

The greatest effect, however, can be achieved by prevention: where there are no infections, drugs are not needed. The aim of preventive measures against antibiotic resistance is therefore to curb the transmission of bacterial pathogens overall. In this context, a new approach to calf fattening has shown particular potential: by adopting prevention measures, the “outdoor calf” system avoids infections and reduces antibiotic use by around 80%.

New active substances found

Even if we succeed in preventing antibiotic resistance from occurring and spreading, there will still be a need to continually develop new antibiotics. In fact, there is already a high demand for new active substances right now. In NRP 72, researchers discovered a number of such substances and developed them in the laboratory. These include both naturally occurring and synthetically manufactured substances, as well as the targeted use of components of bacterial viruses (bacteriophages) that combat pathogens. The successful projects show that academic research can systematically deliver new approaches for effective antibiotics.

Good prospects for implementation in many areas – but with a major catch

Many of these findings can be implemented in existing structures. At national level, the antibiotic resistance strategy (StAR) provides a suitable framework within which the federal government can initiate appropriate measures and coordinate the relevant key players.

“But in many areas it will also need much closer involvement by other parties,” says Joachim Frey. “In both human and veterinary medicine, the cantons must be willing to provide the necessary resources for targeted programmes to improve antibiotic use.”

While he is nevertheless confident in this respect, he sees much bigger hurdles that need to be overcome for the development of new medicines. Since antibiotics currently generate little or no profit, the industry partners that would be needed to develop the new substances to market-ready drugs after the research phase are not coming forward.

“This is not an issue that can be resolved through scientific findings,” says Joachim Frey. Rather – as the programme summary of NRP 72 states – the government would need to act: it should create conditions in which the development of these products, which are so crucial for modern medicine, is economically viable again.

Das könnte Sie auch interessieren:

Net Zero Hub

Passende Firmen zum Thema:

Publikationen

Water Sensitive Urban Design as a Role Model for Water Management in Germany?

Water Sensitive Urban Design as a Role Model for Water Management in Germany?

Autor: Jacqueline Hoyer / Juliane Ziegler
Themenbereich: gwf - Wasser|Abwasser
Erscheinungsjahr: 2013

“Water Sensitive Urban Design” (WSUD), originally developed in Australia, is a planning and design approach combining the functionality of water management with principles of urban design. WSUD is mainly used in the development of integrated ...

Zum Produkt

Tertiary Filtration with Ultrafiltration Membranes in Municipal Wastewater Treatment Plants

Tertiary Filtration with Ultrafiltration Membranes in Municipal Wastewater Treatment Plants

Autor: Martin Wett and Eberhard Back
Themenbereich: gwf - Wasser|Abwasser
Erscheinungsjahr: 2011

During the operation of tertiary filtration stages in a dead-end-mode, retentate concentrate and rinsing water from membrane cleaning accrue naturally. Work on process solutions for these process waters with no additional particle loads for the ...

Zum Produkt

Water Solutions – 01 2017

Water Solutions – 01 2017

Themenbereich: Water Solutions
Erscheinungsjahr: 2017

The leading professional magazine for water and wastewater ...

Zum Produkt

Sie möchten die gwf Wasser + Abwasser testen

Bestellen Sie Ihr kostenloses Probeheft

Überzeugen Sie sich selbst: Gerne senden wir Ihnen die gwf Wasser + Abwasser kostenlos und unverbindlich zur Probe!

Finance Illustration 03