Filter by Themen
Filter by Kategorien
Filter by Veranstaltungsschlagworte
FS Logoi

Flood forecasting with AI: fast and accurate

The National Institute of Water and Atmospheric Research (NIWA, NZ) is using machine learning to forecast flood inundations in a fraction of the time required to run physical models − namely one to two minutes instead of 24 hours. Floods are New Zealand’s most frequent and costly natural disaster, meaning that fast and accurate forecasting of flood impacts is crucial for reducing the risk to life, property and infrastructure.

von | 15.11.24

Source: NIWA (screenshot)

NIWA Climate, Atmosphere & Hazards platform manager Nava Fedaeff leads the project − she says effective flood preparation and response requires detail beyond river flows:

“What people really want to know is not just whether the river is running high, but what areas will be flooded, and what’s at risk from that potential flooding. We’re exploring how AI will help us to move from weather forecasts to inundation forecasts quickly enough so that useful information gets to those who need it.”

Fast predictions, down to street level

Predicting flood maps with physical models can take 24 hours but with machine learning it takes only 1-2 minutes.

Five days ahead of an event, scientists combine several elements such as weather forecasting, river flow predictions, inundation mapping and exposure assessments. This enables them to produce models that detail – down to street level – people, property or infrastructure at risk when storms strike.

Case study and further steps

NIWA data scientist Dr Deidre Cleland used Westport as a case study in the project. She has produced a StoryMap detailing how the system works – with maps, animations and graphics – outlining how her team validated the AI flood model against the real-life 2021 Westport flooding.

“Our next step is operationalizing this machine learning capability so that rapid flood map forecasting is available for a real incoming flood event in Westport. We are also working on extending the machine learning approach to other locations around New Zealand, starting with those at highest risk of flooding,” said Dr Cleland.

This project is part of a $5 million per year package by NIWA to tackle some of New Zealand’s most pressing challenges.

The StoryMap below can be accessed here.

Bildquelle, falls nicht im Bild oben angegeben:

Jetzt Newsletter abonnieren

Stoff für Ihr Wissen, jede Woche in Ihrem Postfach.

Hier anmelden

Das „Ganzkörper-Gehirn“ der Seeigel
Das „Ganzkörper-Gehirn“ der Seeigel

Eine internationale Forschungsgruppe unter Beteiligung des Museums für Naturkunde Berlin hat ein überraschend komplexes Nervensystem bei Seeigeln entdeckt. Die Tiere verfügen über eine Art „Ganzkörper-Gehirn“, dessen genetische Organisation der des Wirbeltiergehirns ähnelt. Zudem fanden die Forschenden lichtempfindliche Zellen im gesamten Körper der Seeigel – vergleichbar mit Strukturen der menschlichen Netzhaut.

mehr lesen
„Cybersicherheit ist zur Überlebensfrage geworden“
„Cybersicherheit ist zur Überlebensfrage geworden“

Die Wasserversorgung zählt zu den sensibelsten Bereichen der öffentlichen Daseinsvorsorge – und sie gerät zunehmend ins Visier von Cyberkriminellen. Wie können Wasserversorger sich schützen? Welche Rolle spielen dabei neue Technologien wie künstliche Intelligenz? Und warum brauchen auch kleine Betriebe dringend professionelle Unterstützung? Ronald Derler, seit 2023 Geschäftsführer des Kompetenzzentrums Digitale Wasserwirtschaft (KDW), hat den Auftrag, Antworten auf diese Fragen zu liefern.

mehr lesen
Die zwei Seiten des Hochwasserschutzes
Die zwei Seiten des Hochwasserschutzes

Der Klimawandel führt zu stärkeren Hochwasserkatastrophen. Die TU Wien und Joanneum Research haben nun erstmals ein Modell entwickelt, das zeigt, wie private und öffentliche Schutzmaßnahmen zusammenspielen.

mehr lesen

Passende Firmen zum Thema:

Sie möchten die gwf Wasser + Abwasser testen

Bestellen Sie Ihr kostenloses Probeheft

Überzeugen Sie sich selbst: Gerne senden wir Ihnen die gwf Wasser + Abwasser kostenlos und unverbindlich zur Probe!

Finance Illustration 03
Datenschutz
gwf-wasser.de, Inhaber: Vulkan-Verlag GmbH (Firmensitz: Deutschland), würde gerne mit externen Diensten personenbezogene Daten verarbeiten. Dies ist für die Nutzung der Website nicht notwendig, ermöglicht aber eine noch engere Interaktion mit Ihnen. Falls gewünscht, treffen Sie bitte eine Auswahl:
Datenschutz
gwf-wasser.de, Inhaber: Vulkan-Verlag GmbH (Firmensitz: Deutschland), würde gerne mit externen Diensten personenbezogene Daten verarbeiten. Dies ist für die Nutzung der Website nicht notwendig, ermöglicht aber eine noch engere Interaktion mit Ihnen. Falls gewünscht, treffen Sie bitte eine Auswahl: