Filter by Themen
Abwasserbehandlung
Analytik & Hygiene
Digitalisierung
Energie
Events
Nachhaltigkeit & Umweltschutz
Netze
Wasseraufbereitung
Wassergewinnung
Wasserstress
Water Solutions
Filter by Kategorien
Advertorial
Branche
Events
Forschung & Entwicklung
Leute
News
People
Products & Solutions
Produkte & Verfahren
Publications
Publikationen
Sonstiges
Trade & Industry
Filter by Veranstaltungsschlagworte
abwasser
ACHEMA
Automatisierung
Digitalisierung
Emerging Pollutants
Energie
FDBR
Hydrologie
kanalnetze
Krankheitserreger
MSR
Spurenstoffe
Talsperren
trinkwasser
Wasser
wasseraufbereitung
wasserbau
Wassernetze
Wasserversorgung
FS Logoi

Researchers identify new toxic byproducts of disinfecting drinking water

Chlorination creates previously unidentified toxic byproducts, a study shows. The experiment, conducted by researchers from Johns Hopkins University (USA) and collaborators from the University of California, Berkeley and Switzerland, found the compound BDA, a very toxic compound and a known carcinogen.

von | 07.02.20

When phenols, compounds that are commonly found in drinking water, mix with chlorine, hundreds of unknown, potentially toxic byproducts are formed (Credit: Marissa Lanterman/Johns Hopkins University).

Mixing drinking water with chlorine, the most common method of disinfecting drinking water in the United States, creates previously unidentified toxic byproducts, says Carsten Prasse from Johns Hopkins University and his collaborators from the University of California, Berkeley and Switzerland.
The researchers’ findings were recently published in the journal Environmental Science & Technology.

Unintended consequences of chlorination

"There’s no doubt that chlorine is beneficial; chlorination has saved millions of lives worldwide from diseases such as typhoid and cholera since its arrival in the early 20th century," says Prasse, an assistant professor of Environmental Health and Engineering at The Johns Hopkins University and the paper’s lead author.
"But that process of killing potentially fatal bacteria and viruses comes with unintended consequences. The discovery of these previously unknown, highly toxic byproducts raises the question how much chlorination is really necessary."
Phenols, which are chemical compounds that occur naturally in the environment and are abundant in personal care products and pharmaceuticals, are commonly found in drinking water. When these phenols mix with chlorine, the process creates a large number of byproducts. Current analytical chemistry methods, however, are unable to detect and identify all of these byproducts, some which may be harmful and can cause long-term health consequences, says Prasse.

Method

In this study, Prasse and colleagues employed a technique commonly used in the field of toxicology to identify compounds based on their reaction with biomolecules like DNA and proteins. They added N-α-acetyl-lysine, which is almost identical to the amino acid lysine that makes up many proteins in our bodies, to detect reactive electrophiles. Previous studies show that electrophiles are harmful compounds which have been linked to a variety of diseases.
The researchers first chlorinated water using the same methods used commercially for drinking water; this included adding excess chlorine, which ensures sufficient disinfection but also eliminates harmless smell and taste compounds that consumers often complain about. After that, the team added the aforementioned amino acid, let the water incubate for one day and used mass spectrometry, a method of analyzing chemicals, to detect the electrophiles that reacted with the amino acid.

Findings

Their experiment found the compounds 2-butene-1,4-dial (BDA) and chloro-2-butene-1,4-dial (or BDA with chlorine attached). BDA is a very toxic compound and a known carcinogen that, until this study, scientists had not detected in chlorinated water before, says Prasse.
While Prasse stresses that this is a lab-based study and the presence of these novel byproducts in real drinking water has not been evaluated, the findings also raise the question about the use of alternative methods to disinfect drinking water, including the use of ozone, UV treatment or simple filtration.
"In other countries, especially in Europe, chlorination is not used as frequently, and the water is still safe from waterborne illnesses. In my opinion, we need to evaluate when chlorination is really necessary for the protection of human health and when alternative approaches might be better," says Prasse.
"Our study also clearly emphasizes the need for the development of new analytical techniques that allow us to evaluate the formation of toxic disinfection by-products when chlorine or other disinfectants are being used. One reason regulators and utilities are not monitoring these compounds is that they don’t have the tools to find them."
Other authors on this study include Urs von Gunten of the Swiss Federal Institute of Aquatic Science and Technology and David L. Sedlak of The University of California, Berkeley.
Funding for this study was provided by the U.S. National Institute for Environmental Health Sciences Superfund Research Program (Grant P42 ES004705) at the University of California, Berkeley and internal funding from Johns Hopkins University.
Source: Johns Hopkins University

Jetzt Newsletter abonnieren

Stoff für Ihr Wissen, jede Woche in Ihrem Postfach.

Hier anmelden

Wärmewende am Wendepunkt: Geothermie als Schlüsseltechnologie für Kommunen
Wärmewende am Wendepunkt: Geothermie als Schlüsseltechnologie für Kommunen

Die Wärmewende steht vor dem Durchbruch: Beim Praxisforum Geothermie Bayern treffen sich Experten, um zu zeigen, wie Erdwärmeprojekte dank verbesserter Rahmenbedingungen erfolgreich umgesetzt werden können. Vom 16. bis 18. Oktober liegt der Fokus auf der Nutzung von Geothermie als zentraler Baustein für eine klimaneutrale Wärmeversorgung, insbesondere in Kommunen.

mehr lesen
The finalists of Earthshot Prize 2024
The finalists of Earthshot Prize 2024

On September 24th, at the third-annual Earthshot Innovation Summit, The Earthshot Prize unveiled its fourth cohort of Prize Finalists, an inspiring group of global innovators, entrepreneurs, community leaders and advocates pioneering solutions to our most pressing climate and environmental challenges. Each of the 15 Finalists are in the running to receive five £1 million prizes which will be awarded at The Earthshot Prize Awards Ceremony in Cape Town, South Africa on November 6th.

mehr lesen
Wasserschutz spielerisch lernen – Zukunft verstehen
Wasserschutz spielerisch lernen – Zukunft verstehen

Mit unserer Business Unit „3BIS18 Bildungsmedien“ machen wir komplexe Themen wie Wasserschutz für Kinder verständlich und spannend. Von Arbeitsheften über Experimente bis hin zu digitalen Lernspielen – wir zeigen schon den Kleinsten, wie wichtig Wasser ist und was jeder Einzelne tun kann, um es zu schützen. So wecken wir nicht nur das Interesse an Umweltthemen, sondern schaffen auch frühzeitig Verbindungen zu relevanten Berufen der Zukunft.

mehr lesen
SeeKaquA: Drone will search for groundwater in the Kalahari
SeeKaquA: Drone will search for groundwater in the Kalahari

In the German-African project SeeKaquA, researchers aim to detect deep groundwater resources in the Kalahari Desert using state-of-the-art drone-based electromagnetics. The project has now officially started, and the first measurement campaigns will take place in the spring of 2025.

mehr lesen

Passende Firmen zum Thema:

Sie möchten die gwf Wasser + Abwasser testen

Bestellen Sie Ihr kostenloses Probeheft

Überzeugen Sie sich selbst: Gerne senden wir Ihnen die gwf Wasser + Abwasser kostenlos und unverbindlich zur Probe!

Finance Illustration 03