Filter by Themen
Abwasserbehandlung
Analytik & Hygiene
Digitalisierung
Energie
Events
Nachhaltigkeit & Umweltschutz
Netze
Wasseraufbereitung
Wassergewinnung
Wasserstress
Water Solutions
Filter by Kategorien
Advertorial
Branche
Events
Forschung & Entwicklung
Leute
News
People
Products & Solutions
Produkte & Verfahren
Publications
Publikationen
Sonstiges
Trade & Industry
Filter by Veranstaltungsschlagworte
abwasser
ACHEMA
Automatisierung
Digitalisierung
Emerging Pollutants
Energie
FDBR
Hydrologie
kanalnetze
Krankheitserreger
MSR
Spurenstoffe
Talsperren
trinkwasser
Wasser
wasseraufbereitung
wasserbau
Wassernetze
Wasserversorgung
FS Logoi

Water purification: device mimics natural process

Kategorien: |
Thema:
Autor: Jonas Völker

Mangrove's capacity of converting salty water into fresh water has long baffled scientists.

By William Weir, YaleNews
The team of researchers in the lab of Yale engineering professor Menachem Elimelech has developed the device. In addition to offering a better understanding of plants’ plumbing systems, it could lead to new desalination technologies, his research team said. The results appeared Feb. 21 in Science Advances.
"We’re showing the mechanism that’s been proposed for how mangroves work," said co-author Jay Werber, a former graduate student in chemical and environmental engineering in Elimelech’s lab. "We’re not biologists, but we’re coming at this from an engineering perspective."
Elimelech is Yale’s Roberto C. Goizueta Professor of Chemical & Environmental Engineering.

Artificial mangrove

The device, which the researchers call an artificial mangrove, combines the desalinating effects of the mangrove’s root, the capillary pumping of the leaves, and the water-conducting capability of the stem. Key to its success is its ability to generate a high level of negative pressure, similar to what you create when drinking through a straw. In the synthetic mangrove, evaporation from specially designed membranes — acting as "leaves" — creates a large negative pressure, which drives desalination of salty water through a semi-permeable membrane "root."
Trees need negative pressure — generated when water is evaporated through the leaves — to take in enough water. Mangroves, which can be found in Florida and are particularly abundant in such countries as Indonesia, Brazil, and Malaysia, perform a doubly impressive trick, researchers said: They need to produce greater negative pressure than the typical tree to drink up the salty water of their environment. Plus, they desalinate this water with their roots, in a process called reverse osmosis.
Particularly impressive, the researchers note, is the way trees minimize the formation of air bubbles inside their system of water tubes, known as the xylem. Water tends to form bubbles under high negative pressures, which would disrupt the flow of water in the plant’s xylem.
Co-author Yunkun Wang, a postdoctoral researcher, said that the researchers’ device manages a similar feat by minimizing the formation of air pockets, due in part to a porous silica structure known as a frit that’s positioned in the middle of the device.

Small-scale devices for separating solutions

In addition to solving some longstanding mysteries about tree hydraulics, Werber said, the researchers’ work could potentially lead to the creation of small-scale devices for separating solutions. "Typically, you have an expensive pump that creates really high pressure to separate those things," he said. "With the mangrove device, you can use the evaporation to drive that completely passively."
The researchers said the device would be particularly useful in situations where electricity isn’t readily available.
Not only did the researchers’ device mimic the natural process, it generated much greater negative pressure than what the mangrove tree generates and could desalinate water with a salt concentration nearly 10-fold that of seawater. Elimelech said this means it could lead to ways of desalinating very salty water, such as the water produced through hydrofracking.
More immediately, though, he said the device provides a window into a process that had long been unclear.
"We were just curious about how nature does some things, and it’s such an amazing thing that we were able to describe it with physics," Elimelech said. "We showed that the tree follows physical principles, and that we can mimic them in a microfluidic device."
Co-author Jongho Lee, a postdoctoral researcher, said the device also has the potential to be used for flood reduction by incorporating it into "sponge cities" — that is, urban areas designed to absorb and catch rainwater and quickly remove it. "Buildings could be designed to work as mangrove trees: Their outside walls would work as leaves and the foundations would act as roots filtering out contaminants," he said.

Das könnte Sie auch interessieren:

Passende Firmen zum Thema:

Publikationen

Water Sensitive Urban Design as a Role Model for Water Management in Germany?

Water Sensitive Urban Design as a Role Model for Water Management in Germany?

Autor: Jacqueline Hoyer / Juliane Ziegler
Themenbereich: gwf - Wasser|Abwasser
Erscheinungsjahr: 2013

“Water Sensitive Urban Design” (WSUD), originally developed in Australia, is a planning and design approach combining the functionality of water management with principles of urban design. WSUD is mainly used in the development of integrated ...

Zum Produkt

Tertiary Filtration with Ultrafiltration Membranes in Municipal Wastewater Treatment Plants

Tertiary Filtration with Ultrafiltration Membranes in Municipal Wastewater Treatment Plants

Autor: Martin Wett and Eberhard Back
Themenbereich: gwf - Wasser|Abwasser
Erscheinungsjahr: 2011

During the operation of tertiary filtration stages in a dead-end-mode, retentate concentrate and rinsing water from membrane cleaning accrue naturally. Work on process solutions for these process waters with no additional particle loads for the ...

Zum Produkt

Water Solutions – 01 2017

Water Solutions – 01 2017

Themenbereich: Water Solutions
Erscheinungsjahr: 2017

The leading professional magazine for water and wastewater ...

Zum Produkt

Sie möchten die gwf Wasser + Abwasser testen

Bestellen Sie Ihr kostenloses Probeheft

Überzeugen Sie sich selbst: Gerne senden wir Ihnen die gwf Wasser + Abwasser kostenlos und unverbindlich zur Probe!

Finance Illustration 03